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Abstract. Although much attention has recently been focused on single-
subject functional networks, using methods such as resting-state func-
tional MRI, methods for constructing single-subject structural networks
are in their infancy. Single-subject cortical networks aim to describe the
self-similarity across the cortical structure, possibly signifying conver-
gent developmental pathways. Previous methods for constructing single-
subject cortical networks have used patch-based correlations and dis-
tance metrics based on curvature and thickness. We present here a method
for constructing similarity-based cortical structural networks that utilizes
a rotation-invariant representation of structure. The resulting graph met-
rics are closely linked to age and indicate an increasing degree of closeness
throughout development in nearly all brain regions, perhaps correspond-
ing to a more regular structure as the brain matures. The derived graph
metrics demonstrate a four-fold increase in power for detecting age as
compared to cortical thickness. This proof of concept study indicates
that the proposed metric may be useful in identifying biologically rele-
vant cortical patterns.

Introduction

Brain connectivity has emerged as a dominant trend in recent neuroimaging
research. Connectivity can be measured by correlation of function [6], diffusion-
based structural connections [7], and covariation of cortical structure across pop-
ulations [1]. Covariance patterns of cortical structure often recapitulate func-
tional connectivity patterns [11], although this analysis is complicated in part
because while functional networks can be derived on a per-subject basis, struc-
tural networks are commonly derived on a group basis, making statistical anal-
ysis of structural networks challenging [3]. Therefore, although [11] showed that
ICA components of cortical covariance are similar to ICA components of rs-fMRI
networks, statistical analysis on a per-subject basis is not straightforward.

As a result of these difficulties with group-wise structural networks, several
groups have begun to pursue single-subject cortical networks. These methods



have coalesced around two camps: Those that generate a network based on the
difference between some derived scalar metrics from cortical morphology, such
as cortical thickness or curvature, and those that use a patch-based correlation
between two different voxels. In the first camp, [10] used a combination of corti-
cal thickness and curvature-based metrics to construct networks. Similarly, Dai
[5] used differences between regional cortical thickness measurements to create
cortical networks. In the second camp, Tijms et al. [12] construct similarity net-
works based on the correlation between patches centered around different voxels.

Previous methods for constructing single-subject cortical networks suffer
from several drawbacks. Fundamentally, cortical thickness, although an impor-
tant measure of cortical structure, does not capture all the information of the
surrounding neighborhood of a voxel; similarities in cortical thickness do not
necessarily imply similarities in structure as a whole. Furthermore, when com-
bining separate scalar values, such as thickness and one or several curvature
measurements, how to combine the features into a meaningful distance metric
is not at all straightforward, and previous methods have constructed complex
and highly specialized models for individual diseases [10]. Examining correla-
tions of patches centered around given voxels is an intuitive and straightforward
approach; the only parameter to choose is the patch size, which can be chosen
based on principled methods.

However, the method by Tijms for computing correlations between voxels has
some technical drawbacks. To obtain rotation invariance, the method rotated
cubes in increments of 45 degrees to obtain maximal correlation with the test
patch. This method suffers from several flaws: First, the choice of 45 degrees is
arbitrary; there is no fundamental reason to only rotate patches in increments
of 45 degrees. Second, it appears that [12] “rotates” cubes by permuting the
entries in the patch. This will lead to distortion in the shape, as the distance
from voxel in the center of a square to the voxel immediately above it is a factor
of
√

2 smaller than the distance between the center of the square to the corner.
Third, the operation is only defined for the somewhat arbitrary shape of cubes of
size 3×3×3 voxels. Finally, even if the rotation were defined for arbitrary angles,
an exhaustive search in three dimensions as [12] does would be computationally
infeasible.

As opposed to the previously proposed approaches, we propose a closed-form,
truly rotation-invariant approach to computing structural similarity across brain
regions. Reorienting two images so that their orientations match is a well-posed
problem that has known solutions. Leveraging these methods, we construct a
rotation-invariant representation of the patches surrounding individual voxels.
The correlation between different patches for different voxels give the adjacency
weights in the graph. An overview is shown in Figure 1.

We apply the method to tracking the network dynamics of cortical struc-
ture in a pediatric dataset. We find that network measurements increase the
power of detecting age changes by a factor of four as compared to using cortical
thickness. In sum, our contributions are: 1) Method for constructing rotation-
invariant structural similarity metrics; 2) Method for combining these sensibly
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Fig. 1: Overview of adjacency matrix construction. The patches surrounding each
voxel are extracted and aligned to a common reference frame. The correlation
between the patches is entered into the adjacency matrix.

into a smaller-dimensional graph; 3) Demonstration that pediatric development
and gender is closely correlated with node closeness, which is more predictive
of age than scalar ROI values; and 4) Demonstration that the proposed method
is superior to thickness distance-based cortical networks for predicting age and
gender.
Methods
We consider a undirected graph G with edges K and nodes N . The edges in the
graph correspond to the strength of connection between different parts of the
brain. Given an image I with J scalar-valued voxels at locations xj ∈ I, j =
1, . . . , J , we seek a function d : I(xi)×I(xj) 7→ R+ to map from the input image
space to graph edge weights. In fMRI, this function can simply be the correlation
of the time-series at the different voxels, but because we consider scalar voxels,
this option is not available to us. Instead, we consider the similarity between the
neighborhood surrounding the voxels of interest. We denote the neighborhood of
a voxel xi asNi = {xj | ‖xj−xi‖22 ≤ r}, where r is the radius of the neighborhood.
The edge weight between voxels xi, xj is then described by

Ki,j = d(Ni,Nj). (1)

A näıve approach to generating the function d(xi, xj) would be to simply com-
pute the correlation of the vector representation of Ni with Nj , but this would
not account for the curved structure of the brain. Ensuring that the metric
between two neighborhoods is rotation-invariant is not trivial.
Rotation-Invariant Correlation: We use a closed-form solution to align voxel
neighborhoods to a canonical reference frame. Although the choice of orientation



is arbitrary, we must choose one orientation as a base for reorienting all the
patches. Instead of choosing one patch, which could bias our results, we first
generate an n × m matrix, where each row i is the vector representation of
Ni, each of which consists of m voxels. For computational feasibility, we take a
random sampling of n voxels from around the cortex. We found that no benefit
was achieved by sampling more than 5000 sample voxels. The first singular vector
of the sample patch matrix serves as our canonical reference frame.

Aligning the orientation of two vectors has a well-known analytical solution
[9]. Aligning two images corresponds to aligning the orientations of the first
eigenvector (or two eigenvectors for a 3D image) of the covariance matrix of the
gradient of the image. We denote the gradient operator g : N 7→ RD, where D is
the number of dimensions in the image. We compute the gradient by convolving
our image with the derivative of a Gaussian (σ = 1 voxel). The covariance matrix
C (Ni) of the gradient of the neighborhood Ni is then given by

C (Ni) =
∑
xi∈Ni

g (I(xi)) g (I(xi))
T ∈ RD×D. (2)

To align the patches of two voxels xi and xj , we denote the k’th eigenvector of
C (Ni) as wk and the k’th eigenvector of C (Nj) as vk and calculate the rotation
matrix Q that best aligns them:

arg min
Q

∑
k∈{1,2}

‖wk −Qvk‖2 (3)

Denoting B = wkv
T
k , we compute the singular value decomposition (SVD) of B:

B = USV T. Then the analytical solution to Equation 3 is given by Q = UMV T ,
where M = diag[1 1 det(U) det(V)]. We then rotate the voxel coordinates xi
by Q and use a linear interpolator to regenerate the neighborhood image after
the rotation. Because the eigenvalues are unsigned, they can sometimes result
in an alignment that is flipped by 180 degrees from the correct alignment. To
eliminate this possibility, we check for a negative correlation between the sample
patch and the reference patch and flip the rotation matrix if necessary. A more
computationally expensive alternative is to use the Radon transform to estimate
orientation [8].
Correlation Matrix Construction: In most connectome construction schemes,
data is first averaged over some brain parcellation and those averaged values are
then used for calculating correlations [13]. In this case, however, the average of a
series of patches is ill-defined, and we found that constructing correlation matri-
ces in this manner did not yield meaningful results. Instead, we first calculated
the correlation of the vector representation of the reoriented neighborhood of
each voxel in the cortex with every other voxel in the cortex. As is standard,
we constructed an I × I correlation matrix, where there are a total of I regions
(nodes) for each subject. The correlation between region i and j was then calcu-
lated as the mean of the correlation of the vector representation of the reoriented
neighborhood of each voxel in region i with each voxel in region j. Once the cor-
relation matrix was constructed, normalized closeness was calculated using the



igraph package in R [4]. For node i, closeness is defined as
∑
j 6=iKi,j , with the

normalization running over all nodes.

We compared our results to the method of [5], which uses the difference in
cortical thickness between two regions to construct the network. Given I total
regions, each with cortical thickness t(i), we construct an I × I distance matrix

D, where D(i, j) = exp−
(

(t(i)−t(j))2
σ

)
. We set σ to 0.015, as recommended in

[5].

Clinical pediatric data: Our pediatric data consists of 119 subjects, with
mean age 12.42, range 7.07-17.99 years, 61 females and 58 males. Magnetization-
Prepared Rapid Acquisition Gradient Echo (MPRAGE) images were acquired
on a Siemens Trio Tim scanner (3T) using a 3D inversion recovery sequence with
TR/TE/TI = 2170/4.33/1100 ms. The resolution was 1x1x1mm2 with a matrix
size of 256x256x192. Flip angle = 7 ◦ and total scan time was 8:08 minutes.
Image preprocessing, including bias correction, skull-stripping, segmentation,
and warping of the AAL label set to the subject space was performed with
ANTs [2], and the AAL label set was used for generating ROI’s to construct the
graphs.

Computation Considerations and Parameters: One of the advantages of a
correlation-based approach to similarity evaluation is the simplicity and lack of
parameters in the method. The only free parameter in this method is the patch
size, which can be set based on the scale of features to be matched. Matching
small patches will find similarities between small features, such as position on
sulcus or gyrus, whereas matching large patches will find regional similarities.
We found that downsampling images to 3mm and using a patch radius of 3 voxels
was appropriate for looking at correlations between ROI’s on the scale of AAL
labels. Reorientation of patches takes under 20 minutes on an Intel Xeon CPU at
2.40GHz with 2 GB of memory. The code for constructing the adjacency matrix is
open-source and is available at https://github.com/bkandel/PatchAnalysis.

Results

Validation of Rotation Invariance: We first checked that our output graph
metrics are indeed rotation invariant. We rotated the images of ten subjects
chosen at random in increments of ten degrees and constructed graphs from
the rotated images. We plotted the deviation of the closeness value from the
subject-wise mean closeness value vs. rotation (Figure 2 for a sample ROI). T-
tests between the closeness values at each rotation and the mean closeness did not
reveal a significant difference from the mean for any rotation (minimum FDR-
corrected p-value 0.13). It may still be possible to achieve even less dependence
on angle by scaling the patches to minimize the effect of outlying voxels.

Sample Subject: A thresholded correlation matrix overlaid on the MNI tem-
plate brain shown in Figure 3. Cortical thickness-derived graphs tend to have
many cliques, corresponding to regions with similar cortical thickness, that are
not connected to each other; graphs using our method tended to have more
central nodes.

https://github.com/bkandel/PatchAnalysis
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Fig. 2: Verification of rotation invariance: Difference between closeness of left
hippocampus and subject-wise mean vs. rotation. The means over all rotations
did not show a correlation with rotation, although there were slightly more low
outliers at 90 and 270 degrees and slightly more high outliers at 0 and 180
degrees.

Fig. 3: Correlation between nodes (thresholded to reveal only top 2% of edges),
overlaid on MNI brain. Top: Representative subject graph using our method.
Bottom: Representative subject graph using cortical thickness-derived graph.



Pediatric Data: In pediatric data, graph closeness was found to be highly
correlated with age in most regions, whereas cortical thickness was not found
to be as correlated in as many regions. To evaluate correlation of closeness
with age in an ROI-wise basis, we performed an ANOVA comparing the mod-
els (in R notation) ROI.Closeness ∼ Sex + BrainVolume and ROI.Closeness ∼
Sex+BrainVolume+Age+Age:Sex+Age2+Age2:Sex, where : signifies an inter-
action term. Analogous ANOVA’s, using the same covariates, were performed for
the thickness-derived graphs and cortical thickness. Patch closeness was found
to be significantly correlated with age (after FDR correction) in 68 out of 68 cor-
tical regions, whereas for thickness, only 17 were found to be correlated, and for
thickness-derived structural graphs, 0 regions were correlated with age. Results
for global mean measurements, with p-values computed with the same models,
is shown in Figure 4. To recover the regression coefficient for age, with power
0.99 and alpha level 0.015, we would need 58 subjects using our method; 223
using cortical thickness; and 506 using cortical thickness-derived graph metrics.
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Fig. 4: Upper left: Mean closeness vs. age using our method; p-value (details in
text) 5.46 × 10−8. Upper right: Mean thickness vs. age, p-value 0.03. Bottom:
Mean thickness-derived graph closeness vs. age, p-value 0.29.

Conclusion
We have presented a principled and closed-form method to generate single-
subject cortical graphs and shown that the graphs are more sensitive to age
changes than cortical thickness or cortical thickness-derived graphs are. This
method has only one free parameter and shows a biologically meaningful trend



with age. The method may also be used for tracking cortical changes in Alzheimer’s
disease and other neurodegenerative conditions.
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