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Background Methods

Discussion 

•	 Cortical	connectivity	has	emerged	as	a	dominant	theme	in	recent	brain	
mapping	work

•	 Most	cortical	connectivity	studies	use	either	correlation	of	functional	MRI	
(fMRI)	time-series	or	diffusion	imaging-weighted	connectivity	estimates

•	 Cortical	thickness-based	connectivity	metrics	typically	use	population-
wide	data,	examining	correlation	of	cortical	thickness	across	subjects

•	 Methods	for	constructing	single-subject	cortical	connectivity	graphs	based	
on	cortical	morphology	are	not	well	developed	

Key Idea
•	 Use	rotation-invariant	correlation	between	patches	centered	at	different	
cortical	voxels	to	define	cortical	similarity

•	 Use	 cortical	 similarity	 between	 different	 cortical	 regions	 to	 populate	
cortical	similarity	graph
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•	 Similarity	across	cortex	provides	insight	into	how	homogeneous	cortical	
structure	is

•	 Because	this	homogeneity	may	be	disrupted	or	increased	during	
development	or	in	neurodegenerative	disease,	the	graphs	may	yield	a	
novel	biomarker

•	 Use	proposed	method	to	create	cortical	graphs	for	
each	subject	in	population

•	 Study	population:	119	pediatric	subjects,	ages	7-17	
years,	61	females	and	58	males;	all	scanned	with	
1x1x1mm	isotropic	T1-weighted	MRI

•	 For	each	subject’s	graph,	calculate	average	graph	
closeness:	igraph package in R [4]. For node i, closeness is defined as

∑
j �=i Ki,j , with the

normalization running over all nodes.

We compared our results to the method of [5], which uses the difference in
cortical thickness between two regions to construct the network. Given I total
regions, each with cortical thickness t(i), we construct an I × I distance matrix

D, where D(i, j) = exp−
(

(t(i)−t(j))2

σ

)
. We set σ to 0.015, as recommended in

[5].

Clinical pediatric data: Our pediatric data consists of 119 subjects, with
mean age 12.42, range 7.07-17.99 years, 61 females and 58 males. Magnetization-
Prepared Rapid Acquisition Gradient Echo (MPRAGE) images were acquired
on a Siemens Trio Tim scanner (3T) using a 3D inversion recovery sequence with
TR/TE/TI = 2170/4.33/1100 ms. The resolution was 1x1x1mm2 with a matrix
size of 256x256x192. Flip angle = 7 ◦ and total scan time was 8:08 minutes.
Image preprocessing, including bias correction, skull-stripping, segmentation,
and warping of the AAL label set to the subject space was performed with
ANTs [2], and the AAL label set was used for generating ROI’s to construct the
graphs.

Computation Considerations and Parameters: One of the advantages of a
correlation-based approach to similarity evaluation is the simplicity and lack of
parameters in the method. The only free parameter in this method is the patch
size, which can be set based on the scale of features to be matched. Matching
small patches will find similarities between small features, such as position on
sulcus or gyrus, whereas matching large patches will find regional similarities.
We found that downsampling images to 3mm and using a patch radius of 3 voxels
was appropriate for looking at correlations between ROI’s on the scale of AAL
labels. Reorientation of patches takes under 20 minutes on an Intel Xeon CPU at
2.40GHz with 2 GB of memory. The code for constructing the adjacency matrix is
open-source and is available at https://github.com/bkandel/PatchAnalysis.

Results

Validation of Rotation Invariance: We first checked that our output graph
metrics are indeed rotation invariant. We rotated the images of ten subjects
chosen at random in increments of ten degrees and constructed graphs from
the rotated images. We plotted the deviation of the closeness value from the
subject-wise mean closeness value vs. rotation (Figure 2 for a sample ROI). T-
tests between the closeness values at each rotation and the mean closeness did not
reveal a significant difference from the mean for any rotation (minimum FDR-
corrected p-value 0.13). It may still be possible to achieve even less dependence
on angle by scaling the patches to minimize the effect of outlying voxels.

Sample Subject: A thresholded correlation matrix overlaid on the MNI tem-
plate brain shown in Figure 3. Cortical thickness-derived graphs tend to have
many cliques, corresponding to regions with similar cortical thickness, that are
not connected to each other; graphs using our method tended to have more
central nodes.

,	where	K is	matrix	of	edge	
weights	and	i	and	j	index	the	nodes	(AAL	label	
regions)

•	 Evaluate	correlation	of	mean	graph	closeness	with	
age

•	 Comparative	methods:	1)	Cortical	thickness;									
2)	Graph	closeness	computed	from	graphs	derived	
from	cortical	thickness	(Dai	et	al.,	MLMI	2011)		

Results
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Fig. 1: Orientation of brain does not affect measured 
graph closeness

Fig. 3: Mean structural graph closeness (bottom) is more highly 
correlated with age when correcting for brain volume than cortical 

thickness (top) or thickness-derived graphs (middle) 

•	 Cortical	structural	graphs	may	be	less	noisy	than	fMRI-
based	graphs

•	 Cortical	structure	may	provide	a	complementary	source	
of	connectivity	information	to	diffusion	and	functional	
imaging

Fig. 2: Sample subject connectivity
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p-value is from ANOVA comparing (1) metric ~ Sex + BrainVol-
ume to (2) metric ~ Sex + BrainVolume + Age + Age:Sex + Age2 

+Age2:Sex + Age
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Measurements vs. Age


