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Background Methods

Discussion 

•	 Cortical connectivity has emerged as a dominant theme in recent brain 
mapping work

•	 Most cortical connectivity studies use either correlation of functional MRI 
(fMRI) time-series or diffusion imaging-weighted connectivity estimates

•	 Cortical thickness-based connectivity metrics typically use population-
wide data, examining correlation of cortical thickness across subjects

•	 Methods for constructing single-subject cortical connectivity graphs based 
on cortical morphology are not well developed 

Key Idea
•	 Use rotation-invariant correlation between patches centered at different 
cortical voxels to define cortical similarity

•	 Use cortical similarity between different cortical regions to populate 
cortical similarity graph

Reorient

Reorient

Compute correlation 
to construct adjacency 

matrix

•	 Similarity across cortex provides insight into how homogeneous cortical 
structure is

•	 Because this homogeneity may be disrupted or increased during 
development or in neurodegenerative disease, the graphs may yield a 
novel biomarker

•	 Use proposed method to create cortical graphs for 
each subject in population

•	 Study population: 119 pediatric subjects, ages 7-17 
years, 61 females and 58 males; all scanned with 
1x1x1mm isotropic T1-weighted MRI

•	 For each subject’s graph, calculate average graph 
closeness: igraph package in R [4]. For node i, closeness is defined as

∑
j �=i Ki,j , with the

normalization running over all nodes.

We compared our results to the method of [5], which uses the difference in
cortical thickness between two regions to construct the network. Given I total
regions, each with cortical thickness t(i), we construct an I × I distance matrix

D, where D(i, j) = exp−
(

(t(i)−t(j))2

σ

)
. We set σ to 0.015, as recommended in

[5].

Clinical pediatric data: Our pediatric data consists of 119 subjects, with
mean age 12.42, range 7.07-17.99 years, 61 females and 58 males. Magnetization-
Prepared Rapid Acquisition Gradient Echo (MPRAGE) images were acquired
on a Siemens Trio Tim scanner (3T) using a 3D inversion recovery sequence with
TR/TE/TI = 2170/4.33/1100 ms. The resolution was 1x1x1mm2 with a matrix
size of 256x256x192. Flip angle = 7 ◦ and total scan time was 8:08 minutes.
Image preprocessing, including bias correction, skull-stripping, segmentation,
and warping of the AAL label set to the subject space was performed with
ANTs [2], and the AAL label set was used for generating ROI’s to construct the
graphs.

Computation Considerations and Parameters: One of the advantages of a
correlation-based approach to similarity evaluation is the simplicity and lack of
parameters in the method. The only free parameter in this method is the patch
size, which can be set based on the scale of features to be matched. Matching
small patches will find similarities between small features, such as position on
sulcus or gyrus, whereas matching large patches will find regional similarities.
We found that downsampling images to 3mm and using a patch radius of 3 voxels
was appropriate for looking at correlations between ROI’s on the scale of AAL
labels. Reorientation of patches takes under 20 minutes on an Intel Xeon CPU at
2.40GHz with 2 GB of memory. The code for constructing the adjacency matrix is
open-source and is available at https://github.com/bkandel/PatchAnalysis.

Results

Validation of Rotation Invariance: We first checked that our output graph
metrics are indeed rotation invariant. We rotated the images of ten subjects
chosen at random in increments of ten degrees and constructed graphs from
the rotated images. We plotted the deviation of the closeness value from the
subject-wise mean closeness value vs. rotation (Figure 2 for a sample ROI). T-
tests between the closeness values at each rotation and the mean closeness did not
reveal a significant difference from the mean for any rotation (minimum FDR-
corrected p-value 0.13). It may still be possible to achieve even less dependence
on angle by scaling the patches to minimize the effect of outlying voxels.

Sample Subject: A thresholded correlation matrix overlaid on the MNI tem-
plate brain shown in Figure 3. Cortical thickness-derived graphs tend to have
many cliques, corresponding to regions with similar cortical thickness, that are
not connected to each other; graphs using our method tended to have more
central nodes.

, where K is matrix of edge 
weights and i and j index the nodes (AAL label 
regions)

•	 Evaluate correlation of mean graph closeness with 
age

•	 Comparative methods: 1) Cortical thickness;         
2) Graph closeness computed from graphs derived 
from cortical thickness (Dai et al., MLMI 2011)  

Results
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Fig. 1: Orientation of brain does not affect measured 
graph closeness

Fig. 3: Mean structural graph closeness (bottom) is more highly 
correlated with age when correcting for brain volume than cortical 

thickness (top) or thickness-derived graphs (middle) 

•	 Cortical structural graphs may be less noisy than fMRI-
based graphs

•	 Cortical structure may provide a complementary source 
of connectivity information to diffusion and functional 
imaging

Fig. 2: Sample subject connectivity
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p-value is from ANOVA comparing (1) metric ~ Sex + BrainVol-
ume to (2) metric ~ Sex + BrainVolume + Age + Age:Sex + Age2 

+Age2:Sex + Age
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Measurements vs. Age


